Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kern, S., Ozsoy-Çiçek, B., & Worby, A. P. (2016). Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sensing, 8(7): 538. doi:10.3390/rs8070538.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-4735-7
Zusammenfassung
Accurate circum-Antarctic sea-ice thickness is urgently required to better understand the different sea-ice cover evolution in both polar regions. Satellite radar and laser altimetry are currently the most promising tools for sea-ice thickness retrieval. We present qualitative inter-comparisons of winter and spring circum-Antarctic sea-ice thickness computed with different approaches from Ice Cloud and land Elevation Satellite (ICESat) laser altimeter total (sea ice plus snow) freeboard estimates. We find that approach A, which assumes total freeboard equals snow depth, and approach B, which uses empirical linear relationships between freeboard and thickness, provide the lowest sea-ice thickness and the smallest winter-to-spring increase in seasonal average modal and mean sea-ice thickness: A: 0.0 m and 0.04 m, B: 0.17 and 0.16 m, respectively. Approach C uses contemporary snow depth from satellite microwave radiometry, and we derive comparably large sea-ice thickness. Here we observe an unrealistically large winter-to-spring increase in seasonal average modal and mean sea-ice thickness of 0.68 m and 0.65 m, respectively, which we attribute to biases in the snow depth. We present a conceptually new approach D. It assumes that the two-layer system (sea ice, snow) can be represented by one layer. This layer has a modified density, which takes into account the influence of the snow on sea-ice buoyancy. With approach D we obtain thickness values and a winter-to-spring increase in average modal and mean sea-ice thickness of 0.17 m and 0.23 m, respectively, which lay between those of approaches B and C. We discuss retrieval uncertainty, systematic uncertainty sources, and the impact of grid resolution. We find that sea-ice thickness obtained with approaches C and D agrees best with independent sea-ice thickness information—if we take into account the potential bias of in situ and ship-based observations.