English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form

MPS-Authors
/persons/resource/persons95148

Scheffzek,  Klaus
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92968

Fritz-Wolf,  Karin
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93650

Kabsch,  Wolfgang
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95966

Wittinghofer,  Alfred
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W., & Wittinghofer, A. (1995). Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature, 374(6520), 378-381. doi:10.1038/374378a0.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-4EB7-9
Abstract
THE Ran proteins constitute a distinct branch of the superfamily of Ras-related GTP-binding proteins which function as molecular switches cycling between GTP-bound 'on' and GDP-bound 'off' states. Ran is located predominantly in the nucleus of eukaryotic cells and is involved in the nuclear import of proteins as well as in control of DNA synthesis and of cell-cycle progression. We report here the crystal structure at 2.3 Å resolution of human Ran (Mr 24K) complexed with GDP and Mg2+. This structure reveals a similarity with the Ras core (G-domain) but with significant variations in regions involved in GDP and Mg2+ coordination (switch I and switch II regions in Ras)9,10, suggesting that there could be major conformational changes upon GTP binding. In addition to the G-domain, an extended chain and an alpha-helix were identified at the carboxy terminus. The amino-terminal (amino-acid residues MAAQGEP) stretch and the acidic tail (211DEDDDL216) appear to be flexible in the crystal structure.