English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

STED nanoscopy with wavelengths at the emission maximum.

MPS-Authors
/persons/resource/persons15210

Hell,  S. W.       
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2346338.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bordenave, M. D., Balzarotti, F., Stefani, F. D., & Hell, S. W. (2016). STED nanoscopy with wavelengths at the emission maximum. Journal of Physics D, 49(36): 365102. doi:10.1088/0022-3727/49/36/365102.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-5CE2-5
Abstract
Commonly, in stimulated emission depletion (STED) fluorescence nanoscopy, light of a wavelength located at the red tail of the emission spectrum of the dye is used to shrink the effective fluorophore excitation volume and thus to obtain images with sub diffraction resolution. Here, we demonstrate that continuous wave (CW) STED nanoscopy is feasible using STED wavelengths located at the emission maximum, where the cross section for stimulated emission is up to 10-fold larger than at the red tail. As a result, STED imaging becomes possible at equally lower STED beam power. Besides, fluorophores that have been considered inapplicable in certain wavelength constellations are thus becoming usable.