English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Xiao_etal_tmbf.pdf
(Publisher version), 181KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Xiao, M., Kong, X., Liu, J., & Ning, J. (2009). TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications & Workshops.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-72A8-E
Abstract
Set is widely used as a kind of basic data structure. However, when it is used for large scale data set the cost of storage, search and transport is overhead. The bloom filter uses a fixed size bit string to represent elements in a static set, which can reduce storage space and search cost that is a fixed constant. The time-space efficiency is achieved at the cost of a small probability of false positive in membership query. However, for many applications the space savings and locating time constantly outweigh this drawback. Dynamic bloom filter (DBF) can support concisely representation and approximate membership queries of dynamic set instead of static set. It has been proved that DBF not only possess the advantage of standard bloom filter, but also has better features when dealing with dynamic set. This paper proposes a time-dependent multiple bit-strings bloom filter (TMBF) which roots in the DBF and targets on dynamic incremental set. TMBF uses multiple bit-strings in time order to present a dynamic increasing set and uses backward searching to test whether an element is in a set. Based on the system logs from a real P2P file sharing system, the evaluation shows a 20% reduction in searching cost compared to DBF.