English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predicting form and meaning: Evidence from brain potentials

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Ito_etal_2016.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S. (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171. doi:10.1016/j.jml.2015.10.007.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-86DD-4
Abstract
We used ERPs to investigate the pre-activation of form and meaning in language comprehension. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a…”), followed by a word that was predictable (book), form-related (hook) or semantically related (page) to the predictable word, or unrelated (sofa). At a 500 ms SOA (Experiment 1), semantically related words, but not form-related words, elicited a reduced N400 compared to unrelated words. At a 700 ms SOA (Experiment 2), semantically related words and form-related words elicited reduced N400 effects, but the effect for form-related words occurred in very high-cloze sentences only. At both SOAs, form-related words elicited an enhanced, post-N400 posterior positivity (Late Positive Component effect). The N400 effects suggest that readers can pre-activate meaning and form information for highly predictable words, but form pre-activation is more limited than meaning pre-activation. The post-N400 LPC effect suggests that participants detected the form similarity between expected and encountered input. Pre-activation of word forms crucially depends upon the time that readers have to make predictions, in line with production-based accounts of linguistic prediction.