English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification

MPS-Authors
/persons/resource/persons198889

Ilik,  Ibrahim A.
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons198893

Georgiev,  Plamen
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons198888

Akhtar,  Asifa
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Quinn, J. J., Ilik, I. A., Qu, K., Georgiev, P., Chu, C., Akhtar, A., et al. (2014). Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nature biotechnology, 32, 933-940.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-8885-9
Abstract
Little is known about the functional domain architecture of long noncoding RNAs (lncRNAs) because of a relative paucity of suitable methods to analyze RNA function at a domain level. Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a scalable technique to dissect pairwise RNA-RNA, RNA-protein and RNA-chromatin interactions at the level of individual RNA domains in living cells. dChIRP of roX1, a lncRNA essential for Drosophila melanogaster X-chromosome dosage compensation, reveals a 'three-fingered hand' ribonucleoprotein topology. Each RNA finger binds chromatin and the male-specific lethal (MSL) protein complex and can individually rescue male lethality in roX-null flies, thus defining a minimal RNA domain for chromosome-wide dosage compensation. dChIRP improves the RNA genomic localization signal by >20-fold relative to previous techniques, and these binding sites are correlated with chromosome conformation data, indicating that most roX-bound loci cluster in a nuclear territory. These results suggest dChIRP can reveal lncRNA architecture and function with high precision and sensitivity.