English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions

MPS-Authors
/persons/resource/persons198887

Fejer,  György
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Wegner,  Mareike Dorothee
Max Planck Society;

/persons/resource/persons191080

Györy,  Ildiko
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191010

Cohen,  Idan
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons50420

Manke,  Thomas
Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons190998

Branzk,  Nora
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191119

Huber,  Michael
Research Group and Chair of Molecular Immunology of the University of Freiburg, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons15783

Schneider,  Robert
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191064

Galanos,  Chris
Emeritus Group: Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191059

Freudenberg,  Marina A.
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fejer, G., Wegner, M. D., Györy, I., Cohen, I., Engelhard, P., Voronov, E., et al. (2013). Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions. Proceedings of the National Academy of Sciences Uzs.A., 110, E-2191-E-2198.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-8923-E
Abstract
Macrophages are diverse cell types in the first line of antimicrobial defense. Only a limited number of primary mouse models exist to study their function. Bone marrow-derived, macrophage-CSF-induced cells with a limited life span are the most common source. We report here a simple method yielding self-renewing, nontransformed, GM-CSF/signal transducer and activator of transcription 5-dependent macrophages (Max Planck Institute cells) from mouse fetal liver, which reflect the innate immune characteristics of alveolar macrophages. Max Planck Institute cells are exquisitely sensitive to selected microbial agents, including bacterial LPS, lipopeptide, Mycobacterium tuberculosis, cord factor, and adenovirus and mount highly proinflammatory but no anti-inflammatory IL-10 responses. They show a unique pattern of innate responses not yet observed in other mononuclear phagocytes. This includes differential LPS sensing and an unprecedented regulation of IL-1α production upon LPS exposure, which likely plays a key role in lung inflammation in vivo. In conclusion, Max Planck Institute cells offer an useful tool to study macrophage biology and for biomedical science.