Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Msl1-Mediated Dimerization of the Dosage Compensation Complex is Essential for Male X-Chromosome Regulation in Drosophila

MPG-Autoren
/persons/resource/persons198890

Hallacli,  Erinc
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons198893

Georgiev,  Plamen
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Spielman,  Clare
Max Planck Society;

/persons/resource/persons198888

Akhtar,  Asifa
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hallacli, E., Lipp, M., Georgiev, P., Spielman, C., Cusack, S., Akhtar, A., et al. (2012). Msl1-Mediated Dimerization of the Dosage Compensation Complex is Essential for Male X-Chromosome Regulation in Drosophila. Molecular Cell, 48, 587-600.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-8CBA-4
Zusammenfassung
The Male-Specific Lethal (MSL) complex regulates dosage compensation of the male X chromosome in Drosophila. Here, we report the crystal structure of its MSL1/MSL2 core, where two MSL2 subunits bind to a dimer formed by two molecules of MSL1. Analysis of structure-based mutants revealed that MSL2 can only interact with the MSL1 dimer, but MSL1 dimerization is MSL2 independent. We show that Msl1 is a substrate for Msl2 E3 ubiquitin ligase activity. ChIP experiments revealed that Msl1 dimerization is essential for targeting and spreading of the MSL complex on X-linked genes; however, Msl1 binding to promoters of male and female cells is independent of the dimer status and other MSL proteins. Finally, we show that loss of Msl1 dimerization leads to male-specific lethality. We propose that Msl1-mediated dimerization of the entire MSL complex is required for Msl2 binding, X chromosome recognition, and spreading along the X chromosome.