English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bacillus subtilis MreB Orthologs Self-Organize into Filamentous Structures underneath the Cell Membrane in a Heterologous Cell System

MPS-Authors
/persons/resource/persons191285

Reth,  Michael
Research Group and Chair of Molecular Immunology of the University of Freiburg, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dempwolff, F., Reimold, C., Reth, M., & Graumann, P. L. (2011). Bacillus subtilis MreB Orthologs Self-Organize into Filamentous Structures underneath the Cell Membrane in a Heterologous Cell System. PLoS ONE, 6, e27035-e27035.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-8DBD-9
Abstract
Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.