English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tumor Stroma-Derived TGF-β Limits Myc-Driven Lymphoma-genesis via Suv39h1-Dependent Senescence

MPS-Authors
/persons/resource/persons191130

Jenuwein,  Thomas
Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reimann, M., Lee, S., Loddenkemper, C., Dörr, J. R., Tabor, V., Aichele, P., et al. (2010). Tumor Stroma-Derived TGF-β Limits Myc-Driven Lymphoma-genesis via Suv39h1-Dependent Senescence. Cancer Cell, 17, 262-272. doi:10.1016/j.ccr.2009.12.043.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-8E99-2
Abstract
Activated RAS/BRAF oncogenes induce cellular senescence as a tumor-suppressive barrier in early cancer development, at least in part, via an oncogene-evoked DNA damage response (DDR). In contrast, Myc activation-although producing a DDR as well-is known to primarily elicit an apoptotic countermeasure. Using the Eμ-myc transgenic mouse lymphoma model, we show here in vivo that apoptotic lymphoma cells activate macrophages to secrete transforming growth factor β (TGF-β) as a critical non-cell-autonomous inducer of cellular senescence. Accordingly, neutralization of TGF-β action, like genetic inactivation of the senescence-related histone methyltransferase Suv39h1, significantly accelerates Myc-driven tumor development via cancellation of cellular senescence. These findings, recapitulated in human aggressive B cell lymphomas, demonstrate that tumor-prompted stroma-derived signals may limit tumorigenesis by feedback senescence induction.