User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Structural characterization of the TCR complex by electron microscopy


Swamy,  Mahima
Research Group and Chair of Molecular Immunology of the University of Freiburg, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Schamel,  Wolfgang A.
Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Arechaga, I., Swamy, M., Abia, D., Schamel, W. A., & Valpuesta, J. M. (2010). Structural characterization of the TCR complex by electron microscopy. International Immunology, 22, 897-903.

Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-8EA7-2
Structural information on how the TCR transmits signals upon binding of its antigen peptide MHC molecule ligand is still lacking. The ectodomains of the TCRα/β, CD3εγ and CD3εδ dimers, as well as the transmembrane domain of CD3ζ, have been characterized by X-ray crystallography and nuclear magnetic resonance (NMR). However, no structural data have been obtained for the entire TCR complex. In this study, we have purified the TCR from T cells under native conditions and used electron microscopy to derive a three-dimensional structure. The TCR complex appears as a pear-shaped structure of 180 × 120 × 65 Å. Furthermore, the use of mAbs has allowed to determine the orientation of the TCRα/β and CD3 subunits and to suggest a model of interactions. Interestingly, the reconstructed TCR is larger than expected for a complex with a αβγεδεζζ stoichiometry. The accommodation of a second TCRαβ to fill in the extra volume is discussed.