English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3'UTR-dependent control of cyclin B1 synthesis

MPS-Authors

Hoffmann,  Steffen
Max Planck Society;

/persons/resource/persons191354

Tsurumi,  Chizuko
Department of Developmental Biology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191272

Polanski,  Zbigniew
Department of Developmental Biology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, S., Tsurumi, C., Kubiak, J. Z., & Polanski, Z. (2006). Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3'UTR-dependent control of cyclin B1 synthesis. Developmental Biology, 292, 46-54.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-9288-5
Abstract
We compared the profile of histone H1 kinase activity, reflecting Maturation Promoting Factor (MPF) activity in oocytes bisected at the germinal vesicle (GV) stage and allowed to mature as separate oocyte halves in vitro. Whereas the oocyte halves containing the nucleus exhibited the same profile of increased kinase activity as that typical for intact oocytes, the anuclear halves revealed strong inhibition of the increase in this activity soon after germinal vesicle breakdown (GVBD). In contrast, the profile of MAP kinase activity did not differ significantly between anuclear and nucleus-containing oocyte halves throughout maturation. Of the two MPF components, CDK1 and cyclin B1, the amount of the latter was significantly reduced in anuclear halves, a reduction due to low-level synthesis and not to enhanced degradation. Expression of three reporter luciferase RNAs constructed, respectively, to contain cyclin B1-specific 3'UTR, the globin-specific 3'UTR, or no 3'UTR sequence was enhanced in nuclear halves, with significantly greater enhancement for the construct containing cyclin B1-specific 3'UTR as compared to the two other RNAs. We conclude that the profile of activity of MPF during mouse oocyte maturation is controlled by an unknown GV-associated factor(s) acting via 3'UTR-dependent control of cyclin B1 synthesis. These results require the revision of the hitherto prevailing view that the control of MPF activity during mouse oocyte maturation is independent of GV-derived material.