English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

FasL /CD95L/APO-1L) Resistance of Neurons Mediated by Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B-Dependent Expression of Lifeguard/Neuronal Membrane Protein 35

MPS-Authors
/persons/resource/persons191343

Taylor,  Verdon
Emeritus Group: Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beier, C. P., Wischhusen, J., Gleichmann, M., Gerhardt, E., Pekanovic, A., Krueger, A., et al. (2005). FasL /CD95L/APO-1L) Resistance of Neurons Mediated by Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B-Dependent Expression of Lifeguard/Neuronal Membrane Protein 35. The Journal of Neuroscience, 25, 6765-6774.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-9317-8
Abstract
The contribution of Fas (CD95/APO-1) to cell death mechanisms of differentiated neurons is controversially discussed. Rat cerebellar granule neurons (CGNs) express high levels of Fas in vitro but are resistant to FasL (CD95L/APO-1L/CD178)-induced apoptosis. We here show that this resistance was mediated by a phosphatidylinositol 3-kinase (PI 3-kinase)-Akt/protein kinase B (PKB)-dependent expression of lifeguard (LFG)/neuronal membrane protein 35. Reduction of endogenous LFG expression by antisense oligonucleotides or small interfering RNA lead to increased sensitivity of CGNs to FasL-induced cell death and caspase-8 cleavage. The inhibition of PI 3-kinase activity sensitized CGNs to FasL-induced caspase-8 and caspase-3 processing and caspase-dependent fodrin cleavage. Pharmacological inhibition of PI 3-kinase, overexpression of the inhibitory protein IκB, or cotransfection of an LFG reporter plasmid with dominant-negative Akt/PKB inhibited LFG reporter activity, whereas overexpression of constitutively active Akt/PKB increased LFG reporter activity. Overexpression of LFG in CGNs interfered with the sensitization to FasL by PI 3-kinase inhibitors. In contrast to CGNs, 12 glioma cell lines, which are sensitive to FasL, did not express LFG. Gene transfer of LFG into these FasL-susceptible glioma cells protected against FasL-induced apoptosis. These results demonstrate that LFG mediated the FasL resistance of CGNs and that, under certain circumstances, e.g., inhibition of the PI 3-kinase-Akt/PKB pathway, CGNs were sensitized to FasL.