English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions

MPS-Authors
/persons/resource/persons190974

Bakkers,  Jeroen
Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191086

Hammerschmidt,  Matthias
Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Brembeck, F. H., Schwarz-Romond, T., Bakkers, J., Wilhelm, S., Hammerschmidt, M., & Birchmeier, W. (2004). Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions. Genes & Development, 18, 2225-2230.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-9462-7
Abstract
β-Catenin controls both cadherin-mediated cell adhesion and activation of Wnt target genes. We demonstrate here that the β-catenin-binding protein BCL9-2, a homolog of the human proto-oncogene product BCL9, induces epithelial-mesenchymal transitions of nontransformed cells and increases β-catenin-dependent transcription. RNA interference of BCL9-2 in carcinoma cells induces an epithelial phenotype and translocates β-catenin from the nucleus to the cell membrane. The switch between β-catenin's adhesive and transcriptional functions is modulated by phosphorylation of Tyr 142 of β-catenin, which favors BCL9-2 binding and precludes interaction with α-catenin. During zebrafish embryogenesis, BCL9-2 acts in the Wnt8-signaling pathway and regulates mesoderm patterning.