Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Gene expression in IFN-γ-activated murine macrophages


Modolell,  M.
Emeritus Group: Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Pereira, C. A., Modolell, M., Frey, J. R., & Lefkovits, I. (2004). Gene expression in IFN-γ-activated murine macrophages. Brazilian Journal of Medical and Biologcial Research, 37, 1795-1809.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-948D-9
Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-γ activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-γ in A/J (267 and 266 genes, respectively, up- and down-regulated) or BALB/c (297 and 58 genes, respectively, up- and down-regulated) mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-γ-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-γ-activated macrophages of resistant mice.