English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line

MPS-Authors
/persons/resource/persons191086

Hammerschmidt,  Matthias
Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mowbray, C., Hammerschmidt, M., & Whitfield, T. T. (2001). Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line. Mechanisms of Development, 108(1-2), 179-184.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-968C-C
Abstract
In this paper we describe the mRNA expression patterns of members of the bone morphogenetic protein (BMP) signalling pathway in the developing zebrafish ear. bmp2b, 4, and 7 are expressed in discrete areas of otic epithelium, some of which correspond to sensory patches. bmp2b and 4 mark the developing cristae before and during the appearance of differentiated hair cells. bmp4 is also expressed in a dorsal, non-sensory region of the ear. Expression of bmps in cristae is conserved between zebrafish, chick, and mouse, but there are also notable differences in ear expression patterns between these species. Of five zebrafish BMP antagonists, only one (follistatin) shows significant expression in the otic epithelium. The type I receptor bmpr-IB shows localised expression in the ear epithelium. Mediators of BMP signalling, smad1 and smad5, are expressed in statoacoustic and lateral line ganglia; smad5 is also expressed at low levels throughout the ear epithelium. An inhibitory smad, smad6, is expressed laterally in the ear epithelium. Lateral line primordia and neuromasts also express bmp2b, 4, follistatin, smad1, and smad5. The conservation of bmp expression in cristae among different species adds weight to the growing evidence that BMPs are required for the development of the vertebrate ear.