Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes

MPG-Autoren
/persons/resource/persons173676

Stellamanns,  Eric
Group Dynamics of biological matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173696

Uppaluri,  Sravanti
Group Dynamics of biological matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121724

Pfohl,  Thomas
Group Dynamics of biological matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hochstetter, A., Stellamanns, E., Deshpande, S., Uppaluri, S., Engstler, M., & Pfohl, T. (2015). Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab on a Chip, 15(8), 1961-1968. doi: 10.1039/c5lc00124b.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-79FD-3
Zusammenfassung
We present a single cell viability assay, based on chemical gradient microfluidics in combination with optical micromanipulation. Here, we used this combination to in situ monitor the effects of drugs and chemicals on the motility of the flagellated unicellular parasite Trypanosoma brucei; specifically, the local cell velocity and the mean squared displacement (MSD) of the cell trajectories. With our method, we are able to record in situ cell fixation by glutaraldehyde, and to quantify the critical concentration of 2-deoxy-D-glucose required to completely paralyze trypanosomes. In addition, we detected and quantified the impact on cell propulsion and energy generation at much lower 2-deoxy-D-glucose concentrations. Our microfluidics-based approach advances fast cell-based drug testing in a way that allows us to distinguish cytocidal from cytostatic drug effects, screen effective dosages, and investigate the impact on cell motility of drugs and chemicals. Using suramin, we could reveal the impact of the widely used drug on trypanosomes: suramin lowers trypanosome motility and induces cell-lysis after endocytosis.