English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo

MPS-Authors
/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95541

Suchanek,  Bettina
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons199217

Amico,  Carla
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92347

Brusa,  Rossella
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92382

Burnashev,  Nail
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95024

Rozov,  Andrej
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sprengel, R., Suchanek, B., Amico, C., Brusa, R., Burnashev, N., Rozov, A., et al. (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92, 279-289. doi:10.1016/S0092-8674(00)80921-6.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-7BB6-2
Abstract
NMDA receptors, a class of glutamate-gated cation channels with high Ca2+ conductance, mediate fast transmission and plasticity of central excitatory synapses. We show here that gene-targeted mice expressing NMDA receptors without the large intracellular C-terminal domain of any one of three NR2 subunits phenotypically resemble mice made deficient in that particular subunit. Mice expressing the NR2B subunit in a C-terminally truncated form (NR2B(deltaC/deltaC) mice) die perinatally. NR2A(deltaC/deltaC) mice are viable but exhibit impaired synaptic plasticity and contextual memory. These and NR2C(deltaC/deltaC) mice display deficits in motor coordination. C-terminal truncation of NR2 subunits does not interfere with the formation of gateable receptor channels that can be synaptically activated. Thus, the phenotypes of our mutants appear to reflect defective intracellular signaling.