Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A comprehensive 3D biomechanically-driven vocal tract model including inverse dynamics for speech research

MPG-Autoren
/persons/resource/persons103072

Moisik,  Scott R.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
INTERACT, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Anderson, P., Harandi, N. M., Moisik, S. R., Stavness, I., & Fels, S. (2015). A comprehensive 3D biomechanically-driven vocal tract model including inverse dynamics for speech research. In Proceedings of Interspeech 2015: The 16th Annual Conference of the International Speech Communication Association (pp. 2395-2399).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-855F-8
Zusammenfassung
We introduce a biomechanical model of oropharyngeal structures that adds the soft-palate, pharynx, and larynx to our previous models of jaw, skull, hyoid, tongue, and face in a unified model. The model includes a comprehensive description of the upper airway musculature, using point-to-point muscles that may either be embedded within the deformable structures or operate exter- nally. The airway is described by an air-tight mesh that fits and deforms with the surrounding articulators, which enables dynamic coupling to our articulatory speech synthesizer. We demonstrate that the biomechanics, in conjunction with the skinning, supports a range from physically realistic to simplified vocal tract geometries to investigate different approaches to aeroacoustic modeling of vocal tract. Furthermore, our model supports inverse modeling to support investigation of plausible muscle activation patterns to generate speech.