Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy.

MPG-Autoren
/persons/resource/persons195503

Tan,  Z.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons136471

Roeloffs,  V. B.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15968

Voit,  D.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons59192

Joseph,  A. A.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons85321

Untenberger,  M.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15516

Merboldt,  K. D.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)

2351084_Suppl_1.avi
(Ergänzendes Material), 761KB

2351084_Suppl_2.avi
(Ergänzendes Material), 490KB

2351084_Suppl_3.avi
(Ergänzendes Material), 893KB

2351084_Suppl_4.avi
(Ergänzendes Material), 443KB

2351084_Suppl_5.avi
(Ergänzendes Material), 2MB

2351084_Suppl_6.avi
(Ergänzendes Material), 525KB

Zitation

Tan, Z., Roeloffs, V. B., Voit, D., Joseph, A. A., Untenberger, M., Merboldt, K. D., et al. (2017). Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magnetic Resonance in Medicine, 77(3), 1082-1093. doi:10.1002/mrm.26192.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-8446-A
Zusammenfassung
PURPOSE: To develop a model-based reconstruction technique for real-time phase-contrast flow MRI with improved spatiotemporal accuracy in comparison to methods using phase differences of two separately reconstructed images with differential flow encodings. METHODS: The proposed method jointly computes a common image, a phase-contrast map, and a set of coil sensitivities from every pair of flow-compensated and flow-encoded datasets obtained by highly undersampled radial FLASH. Real-time acquisitions with five and seven radial spokes per image resulted in 25.6 and 35.7 ms measuring time per phase-contrast map, respectively. The signal model for phase-contrast flow MRI requires the solution of a nonlinear inverse problem, which is accomplished by an iteratively regularized Gauss-Newton method. Aspects of regularization and scaling are discussed. The model-based reconstruction was validated for a numerical and experimental flow phantom and applied to real-time phase-contrast MRI of the human aorta for 10 healthy subjects and 2 patients. RESULTS: Under all conditions, and compared with a previously developed real-time flow MRI method, the proposed method yields quantitatively accurate phase-contrast maps (i.e., flow velocities) with improved spatial acuity, reduced phase noise and reduced streaking artifacts. CONCLUSION: This novel model-based reconstruction technique may become a new tool for clinical flow MRI in real time.