English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hollow Nano- and Microstructures as Catalysts

MPS-Authors
/persons/resource/persons141739

Prieto,  Gonzalo
Research Group Prieto, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons146595

Duyckaerts,  Nicolas
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59085

Wang,  Guanghui
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Prieto, G., Tüysüz, H., Duyckaerts, N., Knossalla, J., Wang, G., & Schüth, F. (2016). Hollow Nano- and Microstructures as Catalysts. Chemical Reviews, 116(22), 14056-14119. doi:10.1021/acs.chemrev.6b00374.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-85BA-B
Abstract
Catalysis is at the core of almost every established and emerging chemical process and also plays a central role in the quest for novel technologies for the sustainable production and conversion of energy. Particularly since the early 2000s, a great surge of interest exists in the design and application of micro- and nanometer-sized materials with hollow interiors as solid catalysts. This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis. First, the main synthesis strategies toward hollow materials are succinctly summarized, with emphasis on the (regioselective) incorporation of various types of catalytic functionalities within their different subunits. The principles underlying the scientific and technological interest in hollow materials as solid catalysts, or catalyst carriers, are then comprehensively reviewed. Aspects covered include the stabilization of catalysts by encapsulation, the introduction of molecular sieving or stimuli-responsive “auxiliary” functionalities, as well as the single-particle, spatial compartmentalization of various catalytic functions to create multifunctional (bio)catalysts. Examples are also given on the applications which hollow structures find in the emerging fields of electro- and photocatalysis, particularly in the context of the sustainable production of chemical energy carriers. Finally, a critical perspective is provided on the plausible evolution lines for this thriving scientific field, as well as the main practical challenges relevant to the reproducible and scalable synthesis and utilization of hollow micro- and nanostructures as solid catalysts.