English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides

MPS-Authors
/persons/resource/persons133027

Deng,  Xiaohui
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons198175

Chen,  Kun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Deng, X., Chen, K., & Tüysüz, H. (2017). Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides. Chemistry of Materials, 29(1), 40-52. doi:10.1021/acs.chemmater.6b02645.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-85B8-F
Abstract
Ordered mesoporous transition metal oxides have attracted considerable research attention due to their unique properties and wide applications. The preparation of these materials has been reported in the literature using soft and hard templating pathways. Compared with soft templating, hard templating, namely, nanocasting, is advantageous for synthesizing rigid mesostructures with high crystallinity and has already been applied to numerous transition metal oxides such as Co3O4, NiO, Fe2O3, and Mn3O4. However, nanocasting is often complicated by the multiple steps involved: first, the preparation of ordered mesoporous silica as the hard template, then infiltration of the metal precursor into the pores, and finally, formation of the metal oxide and removal of the hard template. In this paper, we provide a complete protocol that covers the preparation of most widely used ordered mesoporous silica templates (MCM-41, KIT-6, SBA-15) and the nanocasting process for obtaining ordered mesoporous metal oxides, with emphasizing cobalt oxide as an example. Characterization of the products is presented, and the factors that can potentially affect the process are discussed.