Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Competitive calcium binding: implications for dendritic calcium signaling

MPG-Autoren
/persons/resource/persons94244

Markram,  Henry
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95013

Roth,  Arnd
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93373

Helmchen,  Fritjof
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Markram, H., Roth, A., & Helmchen, F. (1998). Competitive calcium binding: implications for dendritic calcium signaling. Journal of Computational Neuroscience, 5(3), 331-348. doi: 10.1023/A:1008891229546.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-98F3-1
Zusammenfassung
Action potentials evoke calcium transients in dendrites of neocortical pyramidal neurons with time constants of < 100 ms at physiological temperature. This time period may not be sufficient for inflowing calcium ions to equilibrate with all present Ca2+-binding molecules. We therefore explored nonequilibrium dynamics of Ca2+ binding to numerous Ca2+ reaction partners within a dendritelike compartment using numerical simulations. After a brief Ca2+ influx, the reaction partner with the fastest Ca2+ binding kinetics initially binds more Ca2+ than predicted from chemical equilibrium, while companion reaction partners bind less. This difference is consolidated and may result in bypassing of slow reaction partners if a Ca2+ clearance mechanism is active. On the other hand, slower reaction partners effectively bind Ca2+ during repetitive calcium current pulses or during slower Ca2+ influx. Nonequilibrium Ca2+ distribution can further be enhanced through strategic placement of the reaction partners within the compartment. Using the Ca2+ buffer EGTA as a competitor of fluo-3, we demonstrate competitive Ca2+ binding within dendrites experimentally. Nonequilibrium calcium dynamics is proposed as a potential mechanism for differential and conditional activation of intradendritic targets.