Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers

MPG-Autoren
/persons/resource/persons94606

Ohana,  Ora
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ohana, O., & Sakmann, B. (1998). Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. The Journal of Physiology - London, 513(1), 135-148. doi:10.1111/j.1469-7793.1998.135by.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-98F8-8
Zusammenfassung
1. Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. 2. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mM BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 +/- 2.8% (mean +/- s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mM BAPTA, the mean EPSP amplitude was reduced by 72 +/- 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mM. 3. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mM BAPTA at 2 and 1 mM [Ca2+]o. Reducing [Ca2+]o from 2 to 1 mM, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 +/- 2.2% with control pipette solution and by 62 +/- 1.9% after loading with 0.1 mM BAPTA (n = 7). 4. The slow Ca2+ buffer EGTA at 1 mM reduced mean EPSP amplitudes by 15 +/- 2.5% (n = 5). With 10 mM EGTA mean EPSP amplitudes were reduced by 56 +/- 2.3 % (n = 4). 5. With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. 6. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mM BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem.