English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

The effect of literacy acquisition on cortical and subcortical networks: A longitudinal approach

MPS-Authors
/persons/resource/persons79

Huettig,  Falk
Psychology of Language Department, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Singh, P., et al. (2015). The effect of literacy acquisition on cortical and subcortical networks: A longitudinal approach. Talk presented at the 7th Annual Meeting of the Society for the Neurobiology of Language. Chicago, US. 2015-10-15 - 2015-10-17.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-9A79-3
Abstract
How do human cultural inventions such as reading result in neural re-organization? Previous cross-sectional studies have reported extensive effects of literacy on the neural systems for vision and language (Dehaene et al [2010, Science], Castro-Caldas et al [1998, Brain], Petersson et al [1998, NeuroImage], Carreiras et al [2009, Nature]). In this first longitudinal study with completely illiterate participants, we measured brain responses to speech, text, and other categories of visual stimuli with fMRI before and after a group of illiterate participants in India completed a literacy training program in which they learned to read and write Devanagari script. A literate and an illiterate no-training control group were matched to the training group in terms of socioeconomic background and were recruited from the same societal community in two villages of a rural area near Lucknow, India. This design permitted investigating effects of literacy cross-sectionally across groups before training (N=86) as well as longitudinally (training group N=25). The two analysis approaches yielded converging results: Literacy was associated with enhanced, mainly left-lateralized responses to written text along the ventral stream (including lingual gyrus, fusiform gyrus, and parahippocampal gyrus), dorsal stream (intraparietal sulcus), and (pre-) motor systems (pre-central sulcus, supplementary motor area), thalamus (pulvinar), and cerebellum. Significantly reduced responses were observed bilaterally in the superior parietal lobe (precuneus) and in the right angular gyrus. These positive effects corroborate and extend previous findings from cross-sectional studies. However, effects of literacy were specific to written text and (to a lesser extent) to false fonts. Contrary to previous research, we found no direct evidence of literacy affecting the processing of other types of visual stimuli such as faces, tools, houses, and checkerboards. Furthermore, unlike in some previous studies, we did not find any evidence for effects of literacy on responses in the auditory cortex in our Hindi-speaking participants. We conclude that learning to read has a specific and extensive effect on the processing of written text along the visual pathways, including low-level thalamic nuclei, high-level systems in the intraparietal sulcus and the fusiform gyrus, and motor areas. The absence of an effect of literacy on responses in the auditory cortex in particular raises questions about the extent to which phonological representations in the auditory cortex are altered by literacy acquisition or recruited online during reading.