English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants.

MPS-Authors
/persons/resource/persons79

Huettig,  Falk
Psychology of Language Department, MPI for Psycholinguistics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huettig, F., Kumar, U., Mishra, R. K., Tripathi, V., Guleria, A., Prakash Singh, J., et al. (2015). The effect of learning to read on the neural systems for vision and language: A longitudinal approach with illiterate participants. Talk presented at the 19th Meeting of the European Society for Cognitive Psychology (ESCoP 2015). Paphos, Cyprus. 2015-09-17 - 2015-09-20.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-9A6F-C
Abstract
How do human cultural inventions such as reading result in neural re-organization? In this first longitudinal study with young completely illiterate adult participants, we measured brain responses to speech, text, and other categories of visual stimuli with fMRI before and after a group of illiterate participants in India completed a literacy training program in which they learned to read and write Devanagari script. A literate and an illiterate no-training control group were matched to the training group in terms of socioeconomic background and were recruited from the same societal community in two villages of a rural area near Lucknow, India. This design permitted investigating effects of literacy cross-sectionally across groups before training (N=86) as well as longitudinally (training group N=25). The two analysis approaches yielded converging results: Literacy was associated with enhanced, left-lateralized responses to written text along the ventral stream (including lingual gyrus, fusiform gyrus, and parahippocampal gyrus), dorsal stream (intraparietal sulcus), and (pre-) motor systems (pre-central sulcus, supplementary motor area) and thalamus (pulvinar). Significantly reduced responses were observed bilaterally in the superior parietal lobe (precuneus) and in the right angular gyrus. These effects corroborate and extend previous findings from cross-sectional studies. However, effects of literacy were specific to written text and (to a lesser extent) to false fonts. We did not find any evidence for effects of literacy on responses in the auditory cortex in our Hindi-speaking participants. This raises questions about the extent to which phonological representations are altered by literacy acquisition.