English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro

MPS-Authors
/persons/resource/persons95970

Witzemann,  Veit
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rohwedel, J., Kleppisch, T., Pich, U., Guan, K., Jing, S., Zuschratter, W., et al. (1998). Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro. Experimental Cell Research, 239(2), 214-225. doi:10.1006/excr.1997.3903.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-9970-E
Abstract
o analyze the formation of neuromuscular junctions, mouse pluripotent embryonic stem (ES) cells were differentiated via embryoid bodies into skeletal muscle and neuronal cells. The developmentally controlled expression of skeletal muscle-specific genes coding for myf5, myogenin, myoD and myf6, α1subunit of the L-type calcium channel, cell adhesion molecule M-cadherin, and neuron-specific genes encoding the 68-, 160-, and 200-kDa neurofilament proteins, synaptic vesicle protein synaptophysin, brain-specific proteoglycan neurocan, and microtubule-associated protein tau was demonstrated by RT-PCR analysis. In addition, genes specifically expressed at neuromuscular junctions, the γ- and ϵ-subunits of the nicotinic acetylcholine receptor (AChR) and the extracellular matrix protein S-laminin, were found. At the terminal differentiation stage characterized by the formation of multinucleated spontaneously contracting myotubes, the myogenic regulatory gene myf6 and the AChR ϵ-subunit gene, both specifically expressed in mature adult skeletal muscle, were found to be coexpressed. Only the terminally differentiated myotubes showed a clustering of nicotinic acetylcholine receptors (AChR) and a colocalization with agrin and synaptophysin. The formation of AChRs was also demonstrated on a functional level by using the patch clamp technique. Taken together, our results showed that during ES cell differentiationin vitroneuron- and muscle-specific genes are expressed in a developmentally controlled manner, resulting in the formation of postsynaptic-like membranes. Thus, the embryonic stem cell differentiation model will be helpful for studying cellular interactions at neuromuscular junctions by “loss of function” analysisin vitro.