English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

R-type Ca2+ currents evoke transmitter release at a rat central synapse

MPS-Authors
/persons/resource/persons123519

Wu,  Ling-Gang
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92286

Borst,  J. Gerard G.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wu, L.-G., Borst, J. G. G., & Sakmann, B. (1998). R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4720-4725. Retrieved from http://www.pnas.org/content/95/8/4720.abstract.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-9B10-9
Abstract
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.