English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State.

MPS-Authors
/persons/resource/persons192414

Sacco,  Francesca
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sacco, F., Silvestri, A., Posca, D., Pirro, S., Gherardini, P. F., Castagnoli, L., et al. (2016). Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell systems, 2(3), 159-171. doi:10.1016/j.cels.2016.02.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-A19F-9
Abstract
Metformin is the most frequently prescribed drug for type 2 diabetes. In addition to its hypoglycemic effects, metformin also lowers cancer incidence. This anti-cancer activity is incompletely understood. Here, we profiled the metformin-dependent changes in the proteome and phosphoproteome of breast cancer cells using high-resolution mass spectrometry. Intotal, we quantified changes of 7,875 proteins and 15,813 phosphosites after metformin changes. To interpret these datasets, we developed a generally applicable strategy that overlays metformin-dependent changes in the proteome and phosphoproteome onto a literature-derived network. This approach suggested that metformin treatment makes cancer cells more sensitive to apoptotic stimuli and less sensitive to pro-growth stimuli. These hypotheses were tested invivo; as a proof-of-principle, we demonstrated that metformin inhibits the p70S6K-rpS6 axis in a PP2A-phosphatase dependent manner. In conclusion, analysis of deep proteomics reveals both detailed and global mechanisms that contribute to the anti-cancer activity of metformin.