日本語
 
User Manual Privacy Policy ポリシー/免責事項 連絡先
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Estimability and dependency analysis of model parameters based on delay coordinates.

MPS-Authors
/persons/resource/persons173653

Schumann-Bischoff,  Jan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173613

Parlitz,  Ulrich
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Schumann-Bischoff, J., Luther, S., & Parlitz, U. (2016). Estimability and dependency analysis of model parameters based on delay coordinates. Physical Review E, 94(3):. doi:10.1103/PhysRevE.94.032221.


引用: http://hdl.handle.net/11858/00-001M-0000-002B-A30B-3
要旨
In data-driven system identification, values of parameters and not observed variables of a given model of a dynamical system are estimated from measured time series. We address the question of estimability and redundancy of parameters and variables, that is, whether unique results can be expected for the estimates or whether, for example, different combinations of parameter values would provide the same measured output. This question is answered by analyzing the null space of the linearized delay coordinates map. Examples with zero-dimensional, one-dimensional, and two-dimensional null spaces are presented employing the Hindmarsh-Rose model, the Colpitts oscillator, and the Rossler system.