Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pKa corrections

MPG-Autoren
/persons/resource/persons199559

König,  Gerhard
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)

10822_2016_9955_MOESM1_ESM.pdf
(Ergänzendes Material), 713KB

Zitation

Pickard, F. C., König, G., Tofoleanu, F., Lee, J., Simmonett, A. C., Shao, J., et al. (2016). Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pKa corrections. Journal of Computer-Aided Molecular Design, 1087-1100. doi:10.1007/s10822-016-9955-7.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-A42B-6
Zusammenfassung
The computation of distribution coefficients between polar and apolar phases requires both an accurate characterization of transfer free energies between phases and proper accounting of ionization and protomerization. We present a protocol for accurately predicting partition coefficients between two immiscible phases, and then apply it to 53 drug-like molecules in the SAMPL5 blind prediction challenge. Our results combine implicit solvent QM calculations with classical MD simulations using the non-Boltzmann Bennett free energy estimator. The OLYP/DZP/SMD method yields predictions that have a small deviation from experiment (RMSD = 2.3 log D units), relative to other participants in the challenge. Our free energy corrections based on QM protomer and pKa calculations increase the correlation between predicted and experimental distribution coefficients, for all methods used. Unfortunately, these corrections are overly hydrophilic, and fail to account for additional effects such as aggregation, water dragging and the presence of polar impurities in the apolar phase. We show that, although expensive, QM-NBB free energy calculations offer an accurate and robust method that is superior to standard MM and QM techniques alone.