User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes


Jenny,  Jean-Philippe
Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

Jenny, J.-P., Normandeau, A., Francus, P., Taranu, Z. E., Gregory-Eaves, I., Lapointe, F., et al. (2016). Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12655-12660. doi:10.1073/pnas.1605480113.

Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-A862-6
Enhanced phosphorus (P) export from land into streams and lakes is a primary factor driving the expansion of deep-water hypoxia in lakes during the Anthropocene. However, the interplay of regional scale environmental stressors and the lack of long-term instrumental data often impede analyses attempting to associate changes in land cover with downstream aquatic responses. Herein, we performed a synthesis of data that link paleolimnological reconstructions of lake bottom-water oxygenation to changes in land cover/use and climate over the past 300 years to evaluate whether the spread of hypoxia in European lakes was primarily associated with enhanced P exports from growing urbanization, intensified agriculture, or climatic change. We showed that hypoxia started spreading in European lakes around CE 1850 and was greatly accelerated after CE 1900. Socioeconomic changes in Europe beginning in CE 1850 resulted in widespread urbanization, as well as a larger and more intensively cultivated surface area. However, our analysis of temporal trends demonstrated that the onset and intensification of lacustrine hypoxia were more strongly related to the growth of urban areas than to changes in agricultural areas and the application of fertilizers. These results suggest that anthropogenically triggered hypoxia in European lakes was primarily caused by enhanced P discharges from urban point sources. To date, there have been no signs of sustained recovery of bottom-water oxygenation in lakes following the enactment of European water legislation in the 1970s to 1980s, and the subsequent decrease in domestic P consumption.