Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Curvature-controlled defect dynamics in active systems

MPG-Autoren
/persons/resource/persons195394

Ehrig,  Sebastian
John Dunlop, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons122011

Weinkamer,  Richard
Richard Weinkamer, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121253

Dunlop,  John W. C.
John Dunlop, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Manuscript.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ehrig, S., Ferracci, J., Weinkamer, R., & Dunlop, J. W. C. (2017). Curvature-controlled defect dynamics in active systems. Physical Review E, 95(6): 062609. doi:10.1103/PhysRevE.95.062609.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-BB36-0
Zusammenfassung
We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids, with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their interaction energy. Our results provide a new perspective on the migration of living cells, which most likely use the information provided from the curved substrate geometry to guide their collective motion.