English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling

MPS-Authors
/persons/resource/persons199798

Adam,  Nora
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons199801

Erler,  Theresa
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3953

Kallenbach,  Mario
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3954

Kaltenpoth,  Martin
Max Planck Research Group Insect Symbiosis, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4000

Kunert,  Grit
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4169

Schuman,  Meredith C.
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

Locator
Fulltext (public)

ITB533.pdf
(Publisher version), 2MB

Supplementary Material (public)

ITB533s1.pdf
(Supplementary material), 117KB

Citation

Adam, N., Erler, T., Kallenbach, M., Kaltenpoth, M., Kunert, G., Baldwin, I. T., et al. (2017). Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling. Journal of Integrative Plant Biology, 59(1), 44-59. doi:10.1111/jipb.12507.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-A9BE-7
Abstract
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores – a generalist and a specialist – results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio- distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus.