Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Explaining Dark Matter and $B$ Decay Anomalies with an Explaining Dark Matter and B Decay Anomalies with an Lμ - Lτ Model

MPG-Autoren
/persons/resource/persons179827

Queiroz,  Farinaldo
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1609.04026.pdf
(Preprint), 839KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Altmannshofer, W., Gori, S., Profumo, S., & Queiroz, F. (2016). Explaining Dark Matter and $B$ Decay Anomalies with an Explaining Dark Matter and B Decay Anomalies with an Lμ - Lτ Model. Retrieved from http://arxiv.org/abs/1609.04026.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-B526-F
Zusammenfassung
We present a dark sector model based on gauging the $L_\mu - L_\tau$ symmetry that addresses anomalies in $b \rightarrow s \mu^+ \mu^-$ decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the $Z^\prime$ gauge boson of the $L_{\mu}-L_{\tau}$ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from $B_s$ meson oscillations, dark matter direct detection, and the CMB, the model is highly predictive: $B$ physics anomalies and a viable particle dark matter candidate, with a mass of $\sim (5-23)$~GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have $L_\mu-L_\tau$ charges that are smaller than those of the SM leptons.