Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception

MPG-Autoren
/persons/resource/persons131080

Meza-Canales,  Ivan David
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Zitation

Meza-Canales, I. D., Meldau, S., Zavala, J. A., & Baldwin, I. T. (2017). Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception. Plant, Cell and Environment, 40(7), 1039-1056. doi:10.1111/pce.12874.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-B394-5
Zusammenfassung
Herbivory-induced changes in photosynthesis have been documented in many plant species, however the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here we analyzed the early photosynthetic gas-exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral-secretions, and the pathways regulating these responses. Elicitation with M. sexta oral-secretions rapidly decreased photosynthetic carbon-assimilation (AC) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and RuBP-turnover. Phytohormone profiling and gas-exchange-analysis of oral-secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic-responses were mediated by 12-oxo-phytodienoic acid (OPDA), while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signaling mediated by mitogen activated protein kinase 4 (MPK4). The analysis also revealed a role for cytokinins interacting with MPK4 in CO2-mediated stomatal regulation. Hence oral-secretions, while eliciting jasmonic acid-mediated defense responses, also elicits OPDA-mediated changes in stomatal conductance and AC, an observation illustrating the complexity and economy of the signaling that regulates defense and carbon assimilation pathways in response to herbivore attack.