Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Laser-Driven Multiferroics and Ultrafast Spin Current Generation


Oka,  Takashi
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Sato, M., Takayoshi, S., & Oka, T. (2016). Laser-Driven Multiferroics and Ultrafast Spin Current Generation. Physical Review Letters, 117(14): 147202, pp. 1-5. doi:10.1103/PhysRevLett.117.147202.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-1C51-2
We propose an ultrafast way to generate spin chirality and spin current in a class of multiferroic magnets using a terahertz circularly polarized laser. Using the Floquet formalism for periodically driven systems, we show that it is possible to dynamically control the Dzyaloshinskii-Moriya interaction in materials with magnetoelectric coupling. This is supported by numerical calculations, by which additional resonant phenomena are found. Specifically, when a static magnetic field is applied in addition to the circularly polarized laser, a large resonant enhancement of spin chirality is observed resembling the electron spin resonance. Spin current is generated when the laser is spatially modulated by chiral plasmonic structures and could be detected using optospintronic devices.