English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain

MPS-Authors
/persons/resource/persons94928

Reinstein,  Jochen
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95345

Shoeman,  Robert L.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

März, P., Stetefeld, J., Bendfeldt, K., Nitsch, C., Reinstein, J., Shoeman, R. L., et al. (2006). Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. The Journal of Biological Chemistry, 281(29), 20263-20270. doi:10.1074/jbc.M601563200.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-BBD9-F
Abstract
Modification by O-GlcNAc involves a growing number of eucaryotic nuclear and cytosolic proteins. Glycosylation of intracellular proteins is a dynamic process that in several cases competes with and acts as a reciprocal modification system to phosphorylation. O-Linked beta-N-acetylglucosamine transferase (OGT) levels are highest in the brain, and neurodegenerative disorders such as Alzheimer disease have been shown to involve abnormally phosphorylated key proteins, probably as a result of hypoglycosylation. Here, we show that the neurodegenerative disease protein ataxin-10 (Atx-10) is associated with cytoplasmic OGT p110 in the brain. In PC12 cells and pancreas, this association is competed by the shorter OGT p78 splice form, which is down-regulated in brain. Overexpression of Atx-10 in PC12 cells resulted in the reconstitution of the Atx-10-OGT p110 complex and enhanced intracellular glycosylation activity. Moreover, in an in vitro enzyme assay using PC12 cell extracts, Atx-10 increased OGT activity 2-fold. These data indicate that Atx-10 might be essential for the maintenance of a critical intracellular glycosylation level and homeostasis in the brain.