Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Many-body decoherence dynamics and optimized operation of a single-photon switch

MPG-Autoren
/persons/resource/persons199589

Murray,  C
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184856

Pohl,  Thomas
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Murray, C., Gorshkov, A. V., & Pohl, T. (2016). Many-body decoherence dynamics and optimized operation of a single-photon switch. New Journal of Physics, 18: 092001. doi:10.1088/1367-2630/18/9/092001.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-BC47-2
Zusammenfassung
Wedevelop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimized switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments (Nat. Commun. 7 12480) and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.