Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Strongly aligned gas-phase molecules at free-electron lasers.


Boll,  R.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., et al. (2015). Strongly aligned gas-phase molecules at free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(20): 204002. doi:10.1088/0953-4075/48/20/204002.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0167-F
We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\langle {\mathrm{cos}}^{2}{\theta }_{2{\rm{D}}}\rangle =0.85$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.