Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Conserved conformational changes in the ATPase cycle of human Hsp90

MPG-Autoren
/persons/resource/persons94057

Leskovar,  Adriane
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94928

Reinstein,  Jochen
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Richter, K., Soroka, J., Skalniak, L., Leskovar, A., Hessling, M., Reinstein, J., et al. (2008). Conserved conformational changes in the ATPase cycle of human Hsp90. The Journal of Biological Chemistry, 283(26), 17757-17765. doi:10.1074/jbc.M800540200.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-0881-8
Zusammenfassung
The dimeric molecular chaperone Hsp90 is required for the activation and stabilization of hundreds of substrate proteins, many of which participate in signal transduction pathways. The activation process depends on the hydrolysis of ATP by Hsp90. Hsp90 consists of a C-terminal dimerization domain, a middle domain, which may interact with substrate protein, and an N-terminal ATP-binding domain. A complex cycle of conformational changes has been proposed for the ATPase cycle of yeast Hsp90, where a critical step during the reaction requires the transient N-terminal dimerization of the two protomers. The ATPase cycle of human Hsp90 is less well understood, and significant differences have been proposed regarding key mechanistic aspects. ATP hydrolysis by human Hsp90alpha and Hsp90beta is 10-fold slower than that of yeast Hsp90. Despite these differences, our experiments suggest that the underlying enzymatic mechanisms are highly similar. In both cases, a concerted conformational rearrangement involving the N-terminal domains of both subunits is controlling the rate of ATP turnover, and N-terminal cross-talk determines the rate-limiting steps. Furthermore, similar to yeast Hsp90, the slow ATP hydrolysis by human Hsp90s can be stimulated up to over 100-fold by the addition of the co-chaperone Aha1 from either human or yeast origin. Together, our results show that the basic principles of the Hsp90 ATPase reaction are conserved between yeast and humans, including the dimerization of the N-terminal domains and its regulation by the repositioning of the ATP lid from its original position to a catalytically competent one.