English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A generative inference framework for analysing patterns of cultural change in sparse population data with evidence for fashion trends in LBK culture

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kandler, A., & Shennan, S. (2015). A generative inference framework for analysing patterns of cultural change in sparse population data with evidence for fashion trends in LBK culture. Journal of the Royal Society, Interface, 12(113): 20150905. doi:10.1098/rsif.2015.0905.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-08D3-1
Abstract
Cultural change can be quantified by temporal changes in frequency of different cultural artefacts and it is a central question to identify what underlying cultural transmission processes could have caused the observed frequency changes. Observed changes, however, often describe the dynamics in samples of the population of artefacts, whereas transmission processes act on the whole population. Here we develop a modelling framework aimed at addressing this inference problem. To do so, we firstly generate population structures from which the observed sample could have been drawn randomly and then determine theoretical samples at a later time t2 produced under the assumption that changes in frequencies are caused by a specific transmission process. Thereby we also account for the potential effect of time-averaging processes in the generation of the observed sample. Subsequent statistical comparisons (e.g. using Bayesian inference) of the theoretical and observed samples at t2 can establish which processes could have produced the observed frequency data. In this way, we infer underlying transmission processes directly from available data without any equilibrium assumption. We apply this framework to a dataset describing pottery from settlements of some of the first farmers in Europe (the LBK culture) and conclude that the observed frequency dynamic of different types of decorated pottery is consistent with age-dependent selection, a preference for 'young' pottery types which is potentially indicative of fashion trends.