Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Inferring learning strategies from cultural frequency data

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kandler, A., & Powell, A. (2015). Inferring learning strategies from cultural frequency data. In A. Mesoudi, & K. Aoki (Eds.), Learning strategies and cultural evolution during the Palaeolithic (pp. 85-101). Tokyo: Springer Japan.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-091A-A
Zusammenfassung
Social learning has been identified as one of the fundamentals of culture and therefore the understanding of why and how individuals use social information presents one of the big questions in cultural evolution. To date much of the theoretical work on social learning has been done in isolation of data. Evolutionary models often provide important insight into which social learning strategies are expected to have evolved but cannot tell us which strategies human populations actually use. In this chapter we explore how much information about the underlying learning strategies can be extracted by analysing the temporal occurrence or usage patterns of different cultural variants in a population. We review the previous methodology that has attempted to infer the underlying social learning processes from such data, showing that they may apply statistical methods with insufficient power to draw reliable inferences. We then introduce a generative inference framework that allows robust inferences on the social learning processes that underlie cultural frequency data. Using developments in population genetics—in the form of generative simulation modelling and approximate Bayesian computation—as our model, we demonstrate the strength of this method with an example based on simulated data.