Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping

MPG-Autoren
/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vogt, M. A., Chourbaji, S., Brandwein, C., Dormann, C., Sprengel, R., & Gass, P. (2008). Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping. Experimental Neurology, 211(1), 25-33. doi:10.1016/j.expneurol.2007.12.012.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-0A47-F
Zusammenfassung
Tamoxifen-induced mutagenesis via the so-called CreER(T2) fusion enzyme is a key technology for the inducible gene knockout in the adult murine brain. However, it requires a subchronic transient treatment with high doses of the non-selective estrogen receptor antagonist tamoxifen. It has been shown earlier that acute tamoxifen treatment causes behavioral alterations, while the long-term behavioral effects of tamoxifen in mice are so far unknown. Therefore C57BL/6 male mice, a common strain used for targeted mutagenesis and behavioral analyses, were subjected to a tamoxifen treatment protocol as used for inducible mutagenesis in vivo, and analyzed for effects on general behavior (locomotion, exploration), emotional behavior (anxiety, depression) and on learning and memory after a drug-free interval period of 4 weeks. The results demonstrate that a test for depression-like behavior, i.e. the Forced Swim Test, is affected even more than 4 weeks after tamoxifen treatment. In contrast, in all other tests, tamoxifen treated mice showed unaltered behaviors, indicating that the currently established 5-day protocol of tamoxifen treatment (40 mg/kg bid) for inducible mutagenesis has no or little effects on the behavior of C57BL/6 male mice after a latency period of 4 weeks. These results are important for all studies using tamoxifen-induced mutagenesis since this protocol obviously does not evoke alterations in general behaviors such as locomotion, exploration or anxiety-like behaviors, which might confound more complex behavioral analyses, nor does it affect standard tests for learning and memory, such as Morris Water Maze, contextual and cued Fear Conditioning and T-Maze learning.