Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Role of GluR1 in activity-dependent motor system development

MPG-Autoren
/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, L., Schessl, J., Werner, M., Bonnemann, C., Xiong, G., Mojsilovic-Petrovic, J., et al. (2008). Role of GluR1 in activity-dependent motor system development. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 28(40), 9953-9968. doi:10.1523/JNEUROSCI.0880-08.2008.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-0B8A-4
Zusammenfassung
Activity-dependent specification of neuronal architecture during early postnatal life is essential for refining the precision of communication between neurons. In the spinal cord under normal circumstances, the AMPA receptor subunit GluR1 is expressed at high levels by motor neurons and surrounding interneurons during this critical developmental period, although the role it plays in circuit formation and locomotor behavior is unknown. Here, we show that GluR1 promotes dendrite growth in a non-cell-autonomous manner in vitro and in vivo. The mal-development of motor neuron dendrites is associated with changes in the pattern of interneuronal connectivity within the segmental spinal cord and defects in strength and endurance. Transgenic expression of GluR1 in adult motor neurons leads to dendrite remodeling and supernormal locomotor function. GluR1 expression by neurons within the segmental spinal cord plays an essential role in formation of the neural network that underlies normal motor behavior.