Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Ultrafast dynamics in acetylene clocked in a femtosecond XUV stopwatch.


Rolles,  D.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Jiang, Y. H., Senftleben, A., Kurka, M., Rudenko, A., Foucar, L., Herrwerth, O., et al. (2013). Ultrafast dynamics in acetylene clocked in a femtosecond XUV stopwatch. Journal of Physics B: Atomic, Molecular and Optical Physics, 46(16): 164027. doi:10.1088/0953-4075/46/16/164027.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0F65-3
Few-photon induced ultrafast dynamics in acetylene (C2H2) leading to several dissociation channels—deprotonation (H++C2H+ and H++C2H2+), symmetric break-up (CH++CH+) and isomerization (C++CH2+)-–were investigated employing the (XUV; extreme ultra-violet)-pump–(XUV; extreme ultra-violet)-probe scheme at the free-electron laser in Hamburg, combined with multi-hit coincidence detection. The kinetic energy releases and fragment-ion momentum distributions for various decay channels are presented. The C++CH2+ and H++C2H2+ channels reveal clear signatures of ultrafast molecular mechanisms, demonstrating potential applications of our pump-probe technique to complex systems in order to study a large variety of ultrafast phenomena in the XUV regime.