Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

MPG-Autoren
/persons/resource/persons37960

Wang,  Zhu-Jun
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22174

Timpe,  Olaf
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

ncomms13256.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)

SI-Stacking-Sequence-Graphene-revised-31.pdf
(Ergänzendes Material), 1005KB

Zitation

Wang, Z.-J., Dong, J., Cui, Y., Eres, G., Timpe, O., Fu, Q., et al. (2016). Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nature Communications, 7: 13256. doi:10.1038/ncomms13256.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-16A1-9
Zusammenfassung
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.