Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Floquet Realization and Signatures of One-Dimensional Anyons in an Optical Lattice

MPG-Autoren
/persons/resource/persons184989

Sträter,  Christoph
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons189186

Srivastava,  Shashi Chandra Lal
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184474

Eckardt,  Andre
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sträter, C., Srivastava, S. C. L., & Eckardt, A. (2016). Floquet Realization and Signatures of One-Dimensional Anyons in an Optical Lattice. Physical Review Letters, 117(20): 205303. doi:10.1103/PhysRevLett.117.205303.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-18C3-2
Zusammenfassung
We propose a simple scheme for mimicking the physics of one-dimensional anyons in an optical-lattice experiment. It relies on a bosonic representation of the anyonic Hubbard model to be realized via lattice-shaking-induced resonant tunneling against potential offsets, which are created by a combination of a lattice tilt and strong on-site interactions. No lasers additional to those used for the creation of the optical lattice are required. We also discuss experimental signatures of the continuous interpolation between bosons and fermions when the statistical angle theta is varied from 0 to pi. Whereas the real-space density of the bosonic atoms corresponds directly to that of the simulated anyonic model, this is not the case for the momentum distribution. Therefore, we propose to use Friedel oscillations in the density as a probe for continuous fermionization of the bosonic atoms.