English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Polarization-controlled directional scattering for nanoscopic position sensing

MPS-Authors
/persons/resource/persons201139

Neugebauer,  Martin
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201236

Wozniak,  Pawel
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Bag,  Ankan
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201008

Banzer,  Peter
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Neugebauer, M., Wozniak, P., Bag, A., Leuchs, G., & Banzer, P. (2016). Polarization-controlled directional scattering for nanoscopic position sensing. NATURE COMMUNICATIONS, 7: 11286. doi:10.1038/ncomms11286.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-62E9-D
Abstract
Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Angstrom regime can be achieved.