English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optical nano-structuring in light-sensitive AgCl-Ag waveguide thin films: wavelength effect

MPS-Authors
/persons/resource/persons201009

Bashouti,  Muhammad Y.
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  Silke H.
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Talebi, R., Nahal, A., Bashouti, M. Y., & Christiansen, S. H. (2014). Optical nano-structuring in light-sensitive AgCl-Ag waveguide thin films: wavelength effect. OPTICS EXPRESS, 22(25), 30669-30682. doi:10.1364/OE.22.030669.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6468-C
Abstract
Irradiation of photosensitive thin films results in the nanostructures formation in the interaction area. Here, we investigate how the formation of nanostructures in photosensitive waveguide AgCl thin films, doped by Ag nanoparticles, can be customized by tuning the wavelength of the incident beam. We found, silver nanoparticles are pushed towards the interference pattern minima created by the interference of the incident beam with the excited TEn-modes of the AgCl-Ag waveguide. The interference pattern determines the grating constant of the resulting spontaneous periodic nanostructures. Also, our studies indicate a strong dependence of the shape and size distribution of the formed Ag nanocoalescences on the wavelength of the incident beam. It also influences on the surface coverage of the sample by the formed silver nanoparticles and on period of the self-organized nano-gratings. It is found, exposure time and intensity of the incident light are the most determinant parameters for the quality and finesse of our nanostructures. More intense incident light with shorter exposure time generates more regular nanostructures with smaller nano-coalescences and, produces gratings with higher diffraction efficiency. At constant intensity longer exposure time produces more complete nanostructures because of optical positive feedback. We observed exposure with longer wavelength produces finer gratings. (C)2014 Optical Society of America